Electrostatic Mis-Interactions Cause Overexpression Toxicity of Proteins in E. coli
نویسندگان
چکیده
A majority of E. coli proteins when overexpressed inhibit its growth, but the reasons behind overexpression toxicity of proteins remain unknown. Understanding the mechanism of overexpression toxicity is important from evolutionary, biotechnological and possibly clinical perspectives. Here we study sequence and functional features of cytosolic proteins of E. coli associated with overexpression toxicity to understand its mechanism. We find that number of positively charged residues is significantly higher in proteins showing overexpression toxicity. Very long proteins also show high overexpression toxicity. Among the functional classes, transcription factors and regulatory proteins are enriched in toxic proteins, while catalytic proteins are depleted. Overexpression toxicity could be predicted with reasonable accuracy using these few properties. The importance of charged residues in overexpression toxicity indicates that nonspecific electrostatic interactions resulting from protein overexpression cause toxicity of these proteins and suggests ways to improve the expression level of native and foreign proteins in E. coli for basic research and biotechnology. These results might also be applicable to other bacterial species.
منابع مشابه
Construction of New Genetic Tools as Alternatives for Protein Overexpression in Escherichia coli and Pseudomonas aeruginosa
Background: Pseudomonas protein expression in E. coli is known to be a setback due to signifi cant genetic variation and absence of several genetic elements in E. coli for regulation and activation of Pseudomonas proteins. Modifi cations in promoter/repressor system and shuttle plasmid maintenance have made the expression of stable and active Pseudomonas protein possible in bot...
متن کاملCloning, Overexpression and in vitro Antifungal Activity of Zea Mays PR10 Protein
Background: Plants have various defense mechanisms such as production of antimicrobial peptides, particularly pathogenesis related proteins (PR proteins). PR10 family is an essential member of this group, with antifungal, antibacterial and antiviral activities.Objective: The goal of this study is to assess the antifungal activity of maize PR10 against some of fungal phytopathogens.M...
متن کاملHigher Expression Level and Lower Toxicity of Genetically Spliced Rotavirus NSP4 in Comparison to the Full-Length Protein in E. coli
Background: Rotavirus group A (RVA) is recognized as a major cause of severe gastroenteritis in children and new-born animals. Nonstructural protein 4 (NSP4) is responsible for the enterotoxic activity of these viruses in the villus epithelial cells. Amino acids 114-135 of NSP4 are known to form the diarrhea-inducing region of this viral enterotoxin. Therefore, developing an NSP4 lacking the en...
متن کاملOverexpression of Recombinant Human Beta Interferon (rhINF-β) in Periplasmic Space of Escherichia coli
Human Interferon β (INF-β) is a member of cytokines family which different studies have shown its immunomodulatory and antiviral activities. In this study an expression vector was designed and constructed for expression of human INF-β-1b either in shake flasks and bench top bioreactor. The designed vector was constructed based upon pET-25b(+) with T7 promoter. Recombinant human beta interferon ...
متن کاملOverexpression of Full-Length Core Protein of Hepatitis C Virus by Escherichia coli Cultivated in Stirred Tank Fermentor
The mature core protein of the Hepatitis C virus (HCVC173) carrying pelB as a signal peptide (PelB::core) was overexpressed in Escherichia coli as 18% and 23.3% of the host’s total protein, in flask and fermentor cultivation, respectively. A final specific yield of 25 ± 1 mg HCVC173/g dry cell weight and an overallproductivity of 51±1 mg HCVC173/l/h were obtained in the stirred-tank ferme...
متن کامل